Click here to close now.


Adobe Flex Authors: Matthew Lobas, Newswire, Shelly Palmer, Kevin Benedict

News Feed Item

Big Data Market: Business Case, Market Analysis and Forecasts 2014 - 2019

LONDON, Jan. 8, 2014 /PRNewswire/ -- just published a new market research report:

Big Data Market: Business Case, Market Analysis and Forecasts 2014 - 2019


Big Data refers to a massive volume of both structured and unstructured data that is so large that it is difficult to process using traditional database and software techniques. While the presence of such datasets is not something new, the past few years have witnessed immense commercial investments in solutions that address the processing and analysis of Big Data.

Big Data opens a vast array of applications and opportunities in multiple vertical sectors including, but not limited to, retail and hospitality, media, utilities, financial services, healthcare and pharmaceutical, telecommunications, government, homeland security, and the emerging industrial Internet vertical.

Despite challenges, such as the lack of clear big data strategies, security concerns and the need for workforce re-skilling, the growth potential of Big Data is unprecedented. Mind Commerce estimates that global spending on Big Data will grow at a CAGR of 48% between 2014 and 2019. Big Data revenues will reach $135 Billion by the end of 2019.

This report provides an in-depth assessment of the global Big Data market, including a study of the business case, application use cases, vendor landscape, value chain analysis, case studies and a quantitative assessment of the industry from 2013 to 2019.

Topics covered in the report:

The Business Case for Big Data: An assessment of the business case, growth drivers and barriers for Big Data
Big Data Technology: A review of the underlying technologies that resolve big data complexities
Big Data Use Cases: A review of investments sectors and specific use cases for the Big Data market
The Big Data Value Chain: An analysis of the value chain of Big Data and the major players involved within it
Vendor Assessment & Key Player Profiles: An assessment of the vendor landscape of leading players within the Big Data market
Market Analysis and Forecasts: A global and regional assessment of the market size and forecasts for the Big Data market from 2014 to 2019

Key Findings:

Big Data opens a vast array of applications and opportunities in multiple vertical sectors including, but not limited to, retail and hospitality, media, utilities, financial services, healthcare and pharmaceutical, telecommunications, government, homeland security, and the emerging industrial Internet vertical.
Mind Commerce has determined that IBM leads the Big Data market in terms of current investments (from a vendor perspective), with estimated revenue for $1.3 Billion in 2012 for its Big Data services, software and hardware sale
Despite challenges such as the lack of clear big data strategies, security concerns and the need for workforce re-skilling, the growth potential of Big Data is unprecedented. Mind Commerce estimates that global spending on Big Data will grow at a CAGR of 48% between 2014 and 2019. Big Data revenues will reach $135 Billion by the end of 2019

Companies in Report:

Apache Software Foundation
APTEAN (Formerly CDC Software)
Bristol Myers Squibb
Brooks Brothers
Centre for Economics and Business Research
Cisco Systems
Cloud Security Alliance (CSA)
GoodData Corporation
Hitachi Data Systems
MongoDB (Formerly 10Gen)
Morgan Stanley
MU Sigma
Opera Solutions
Revolution Analytics
SAS Institute
Software AG/Terracotta
Tableau Software
Think Big Analytics
Tidemark Systems
US Xpress
VMware (Part of EMC)

Target Audience:

Investment Firms
Media Companies
Utilities Companies
Financial Institutions
Application Developers
Government Organizations
Retail & Hospitality Companies
Other Vertical Industry Players
Analytics and Data Reporting Companies
Healthcare Service Providers & Institutions
Fixed and Mobile Telecom service providers
Big Data Technology/Solution (Infrastructure, Software, Service) Vendors
1 Chapter 1: Introduction 8
1.1 Executive Summary 8
1.2 Topics Covered 9
1.3 Key Findings 10
1.4 Target Audience 11
1.5 Companies Mentioned 12
2 Chapter 2: Big Data Technology & Business Case 15
2.1 Defining Big Data 15
2.2 Key Characteristics of Big Data 15
2.2.1 Volume 15
2.2.2 Variety 16
2.2.3 Velocity 16
2.2.4 Variability 16
2.2.5 Complexity 16
2.3 Big Data Technology 17
2.3.1 Hadoop 17 MapReduce 17 HDFS 17 Other Apache Projects 18
2.3.2 NoSQL 18 Hbase 18 Cassandra 18 Mongo DB 18 Riak 19 CouchDB 19
2.3.3 MPP Databases 19
2.3.4 Others and Emerging Technologies 20 Storm 20 Drill 20 Dremel 20 SAP HANA 20 Gremlin & Giraph 20
2.4 Market Drivers 21
2.4.1 Data Volume & Variety 21
2.4.2 Increasing Adoption of Big Data by Enterprises & Telcos 21
2.4.3 Maturation of Big Data Software 21
2.4.4 Continued Investments in Big Data by Web Giants 21
2.5 Market Barriers 22
2.5.1 Privacy & Security: The 'Big' Barrier 22
2.5.2 Workforce Re-skilling & Organizational Resistance 22
2.5.3 Lack of Clear Big Data Strategies 23
2.5.4 Technical Challenges: Scalability & Maintenance 23
3 Chapter 3: Key Investment Sectors for Big Data 24
3.1 Industrial Internet & M2M 24
3.1.1 Big Data in M2M 24
3.1.2 Vertical Opportunities 24
3.2 Retail & Hospitality 25
3.2.1 Improving Accuracy of Forecasts & Stock Management 25
3.2.2 Determining Buying Patterns 25
3.2.3 Hospitality Use Cases 25
3.3 Media 26
3.3.1 Social Media 26
3.3.2 Social Gaming Analytics 26
3.3.3 Usage of Social Media Analytics by Other Verticals 26
3.4 Utilities 27
3.4.1 Analysis of Operational Data 27
3.4.2 Application Areas for the Future 27
3.5 Financial Services 27
3.5.1 Fraud Analysis & Risk Profiling 27
3.5.2 Merchant-Funded Reward Programs 27
3.5.3 Customer Segmentation 28
3.5.4 Insurance Companies 28
3.6 Healthcare & Pharmaceutical 28
3.6.1 Drug Development 28
3.6.2 Medical Data Analytics 28
3.6.3 Case Study: Identifying Heartbeat Patterns 28
3.7 Telcos 29
3.7.1 Telco Analytics: Customer/Usage Profiling and Service Optimization 29
3.7.2 Speech Analytics 29
3.7.3 Other Use Cases 29
3.8 Government & Homeland Security 30
3.8.1 Developing New Applications for the Public 30
3.8.2 Tracking Crime 30
3.8.3 Intelligence Gathering 30
3.8.4 Fraud Detection & Revenue Generation 30
3.9 Other Sectors 31
3.9.1 Aviation: Air Traffic Control 31
3.9.2 Transportation & Logistics: Optimizing Fleet Usage 31
3.9.3 Sports: Real-Time Processing of Statistics 31
4 Chapter 4: The Big Data Value Chain 32
4.1 How Fragmented is the Big Data Value Chain? 32
4.2 Data Acquisitioning & Provisioning 33
4.3 Data Warehousing & Business Intelligence 33
4.4 Analytics & Virtualization 33
4.5 Actioning & Business Process Management (BPM) 34
4.6 Data Governance 34
5 Chapter 5: Key Players in the Big Data Market 35
5.1 Vendor Assessment Matrix 35
5.2 Apache Software Foundation 36
5.3 Accenture 36
5.4 Amazon 36
5.5 APTEAN (Formerly CDC Software) 37
5.6 Cisco Systems 37
5.7 Cloudera 37
5.8 Dell 37
5.9 EMC 38
5.10 Facebook 38
5.11 GoodData Corporation 38
5.12 Google 38
5.13 Guavus 39
5.14 Hitachi Data Systems 39
5.15 Hortonworks 39
5.16 HP 40
5.17 IBM 40
5.18 Informatica 40
5.19 Intel 40
5.20 Jaspersoft 41
5.21 Microsoft 41
5.22 MongoDB (Formerly 10Gen) 41
5.23 MU Sigma 42
5.24 Netapp 42
5.25 Opera Solutions 42
5.26 Oracle 42
5.27 Pentaho 43
5.28 Platfora 43
5.29 Qliktech 43
5.30 Quantum 44
5.31 Rackspace 44
5.32 Revolution Analytics 44
5.33 Salesforce 45
5.34 SAP 45
5.35 SAS Institute 45
5.36 Sisense 45
5.37 Software AG/Terracotta 46
5.38 Splunk 46
5.39 Sqrrl 46
5.40 Supermicro 47
5.41 Tableau Software 47
5.42 Teradata 47
5.43 Think Big Analytics 48
5.44 Tidemark Systems 48
5.45 VMware (Part of EMC) 48
6 Chapter 6: Market Analysis 49
6.1 Big Data Revenue: 2014 - 2019 49
6.2 Big Data Revenue by Functional Area: 2014 - 2019 50
6.2.1 Supply Chain Management 51
6.2.2 Business Intelligence 52
6.2.3 Application Infrastructure & Middleware 53
6.2.4 Data Integration Tools & Data Quality Tools 54
6.2.5 Database Management Systems 55
6.2.6 Big Data Social & Content Analytics 56
6.2.7 Big Data Storage Management 57
6.2.8 Big Data Professional Services 58
6.3 Big Data Revenue by Region 2014 - 2019 59
6.3.1 Asia Pacific 60
6.3.2 Eastern Europe 61
6.3.3 Latin & Central America 62
6.3.4 Middle East & Africa 63
6.3.5 North America 64
6.3.6 Western Europe 65

List of Figures

Figure 1: The Big Data Value Chain 32
Figure 2: Big Data Vendor Ranking Matrix 2013 35
Figure 3: Big Data Revenue: 2013 - 2019 ($ Million) 49
Figure 4: Big Data Revenue by Functional Area: 2013 - 2019 ($ Million) 50
Figure 5: Big Data Supply Chain Management Revenue: 2013 - 2019 ($ Million) 51
Figure 6: Big Data Supply Business Intelligence Revenue: 2013 - 2019 ($ Million) 52
Figure 7: Big Data Application Infrastructure & Middleware Revenue: 2013 - 2019 ($ Million) 53
Figure 8: Big Data Integration Tools & Data Quality Tools Revenue: 2013 - 2019 ($ Million) 54
Figure 9: Big Data Database Management Systems Revenue: 2013 - 2019 ($ Million) 55
Figure 10: Big Data Social & Content Analytics Revenue: 2013 - 2019 ($ Million) 56
Figure 11: Big Data Storage Management Revenue: 2013 - 2019 ($ Million) 57
Figure 12: Big Data Professional Services Revenue: 2013 - 2019 ($ Million) 58
Figure 13: Big Data Revenue by Region: 2013 - 2019 ($ Million) 59
Figure 14: Asia Pacific Big Data Revenue: 2013 - 2019 ($ Million) 60
Figure 15: Eastern Europe Big Data Revenue: 2013 - 2019 ($ Million) 61
Figure 16: Latin & Central America Big Data Revenue: 2013 - 2019 ($ Million) 62
Figure 17: Middle East & Africa Big Data Revenue: 2013 - 2019 ($ Million) 63
Figure 18: North America Big Data Revenue: 2013 - 2019 ($ Million) 64
Figure 19: Western Europe Big Data Revenue: 2013 - 2019 ($ Million) 65

Read the full report:
Big Data Market: Business Case, Market Analysis and Forecasts 2014 - 2019

For more information:
Sarah Smith
Research Advisor at
Email: [email protected]
Tel: +44 208 816 85 48

SOURCE ReportBuyer

More Stories By PR Newswire

Copyright © 2007 PR Newswire. All rights reserved. Republication or redistribution of PRNewswire content is expressly prohibited without the prior written consent of PRNewswire. PRNewswire shall not be liable for any errors or delays in the content, or for any actions taken in reliance thereon.

@ThingsExpo Stories
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete end-to-end walkthrough of the analysis from start to finish. Participants will also be given the pract...
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
Internet of Things (IoT) will be a hybrid ecosystem of diverse devices and sensors collaborating with operational and enterprise systems to create the next big application. In their session at @ThingsExpo, Bramh Gupta, founder and CEO of, and Fred Yatzeck, principal architect leading product development at, discussed how choosing the right middleware and integration strategy from the get-go will enable IoT solution developers to adapt and grow with the industry, while at the same time reduce Time to Market (TTM) by using plug and play capabilities offered by a robust IoT ...
Mobile messaging has been a popular communication channel for more than 20 years. Finnish engineer Matti Makkonen invented the idea for SMS (Short Message Service) in 1984, making his vision a reality on December 3, 1992 by sending the first message ("Happy Christmas") from a PC to a cell phone. Since then, the technology has evolved immensely, from both a technology standpoint, and in our everyday uses for it. Originally used for person-to-person (P2P) communication, i.e., Sally sends a text message to Betty – mobile messaging now offers tremendous value to businesses for customer and empl...
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT.
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Clearly the way forward is to move to cloud be it bare metal, VMs or containers. One aspect of the current public clouds that is slowing this cloud migration is cloud lock-in. Every cloud vendor is trying to make it very difficult to move out once a customer has chosen their cloud. In his session at 17th Cloud Expo, Naveen Nimmu, CEO of Clouber, Inc., will advocate that making the inter-cloud migration as simple as changing airlines would help the entire industry to quickly adopt the cloud without worrying about any lock-in fears. In fact by having standard APIs for IaaS would help PaaS expl...
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
Organizations already struggle with the simple collection of data resulting from the proliferation of IoT, lacking the right infrastructure to manage it. They can't only rely on the cloud to collect and utilize this data because many applications still require dedicated infrastructure for security, redundancy, performance, etc. In his session at 17th Cloud Expo, Emil Sayegh, CEO of Codero Hosting, will discuss how in order to resolve the inherent issues, companies need to combine dedicated and cloud solutions through hybrid hosting – a sustainable solution for the data required to manage I...
NHK, Japan Broadcasting, will feature the upcoming @ThingsExpo Silicon Valley in a special 'Internet of Things' and smart technology documentary that will be filmed on the expo floor between November 3 to 5, 2015, in Santa Clara. NHK is the sole public TV network in Japan equivalent to the BBC in the UK and the largest in Asia with many award-winning science and technology programs. Japanese TV is producing a documentary about IoT and Smart technology and will be covering @ThingsExpo Silicon Valley. The program, to be aired during the peak viewership season of the year, will have a major impac...
Apps and devices shouldn't stop working when there's limited or no network connectivity. Learn how to bring data stored in a cloud database to the edge of the network (and back again) whenever an Internet connection is available. In his session at 17th Cloud Expo, Bradley Holt, Developer Advocate at IBM Cloud Data Services, will demonstrate techniques for replicating cloud databases with devices in order to build offline-first mobile or Internet of Things (IoT) apps that can provide a better, faster user experience, both offline and online. The focus of this talk will be on IBM Cloudant, Apa...
WebRTC is about the data channel as much as about video and audio conferencing. However, basically all commercial WebRTC applications have been built with a focus on audio and video. The handling of “data” has been limited to text chat and file download – all other data sharing seems to end with screensharing. What is holding back a more intensive use of peer-to-peer data? In her session at @ThingsExpo, Dr Silvia Pfeiffer, WebRTC Applications Team Lead at National ICT Australia, will look at different existing uses of peer-to-peer data sharing and how it can become useful in a live session to...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.